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TIME DEPENDENCE OF THE HEAT-TRANSFER COEFFICIENT 

BETWEEN COMPONENTS OF A COMPOSITE DURING HEAT 

TRANSFER 

I. V. Goncharov, V. L. Mikov, 
and V. P. Sobolev 

UDC 536.2.01 

The effect of the thermophysical and geometrical characteristics of the com- 
ponents of a composite on the dynamic behavior and asymptotic value of the 
coefficient of heat transfer between the layers is studied. 

A multitemperature approach [i-3] based onaveraging of the temperature fields of each 
component within an elementary microvolume is beingemployed increasingly in the calculation 
of the thermal state of heterogeneous media. In the case of layered and reinforced media this 
makes it possible to reduce the dimension of the initial heat equations, thus greatly facili- 
tating the solution of the problem. The resulting system of differential equations (the order 
of the system is equal to the number of components) is closed by introducing a relation between 
the density of the thermal flux between the components and their average temperatures. In [i] 
such a relation was obtained from phenomenological linear relations between the thermodynamic 
forces and fluxes: 

q~i=~ (t~--tl). (1) 

It is understood that = is an effective characteristic of the thermophysical and geometric 
parameters of the structure of the composite. The explicit form for = for a layered composite 
was obtained in [2] and [3], respectively, as 

~ = 2 V 3  11 l~112 , ~s 3XlX~ ( 2 )  

The heat-transfer coefficient a is an integrated characteristic of the rate of heat transfer 
between the components. The integrated heat-transfer characteristics are generally not con- 
stants. It is known [4], e.g., that the effective thermal-conductivity coefficient, which is 
also an integrated characteristic, depends on time. By analogy we can assume that a will be 
a function of time in layered (reinforced) media. 

We examine this by considering the model problem of propagation of heat in a two-layer 
composite with a regular structure (a representative cross section of the material is shown 
in Fig. i) under boundary conditions of the second kind. On the assumption that the thermo- 
physical characteristics of the components do not depend on the temperature, we can write 
the following for an isolated elementary cross section: 
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Fig. i. Representative cross section of a two- 
layer composite with a regular structure: i) 
first layer; 2) second layer; H is the thick- 
ness of the material. 

T~ (x, z, O)= O, 

~,=eT~,=l,=o = - -  qo (t), s = qn (t), 

Ti,=lx=t~ = O, 

X = I T I . = I , = o  = ~,=2T2.=1,=o, (T1 - -  T=)J==o = - -  R~,= lT l ,= l==o .  

(3a)  
(3b) 

(3c) 

(3d)  

(3e) 

We set Azl > ~z2, i.e., component (I) has better thermal conductivity. Applying the Laplace 
transformation with respect to time and the Fourier cosine transformation with respect to the 
temperatures of the components Ti(x, z, t) (3), we can reduce the equations to a system of 
ordinary differential equations of the second order in the transform of the temperatures 
Ti(x , n, p), whose solution has the form 

~=~qh (-- l)iMi(x, n, p) , i =  1, 2, (4)  

where 

q)i 

M i ~ ,, 

H 

0 0 

QL ---- ,( Q exp (-- pt) dt, Q = qo (t) -k ( - -  l)~q. it); 
0 

. t T ~ t  

7 2 5  



/1~ = ~=~ ] / ~  ch (] /~l~)  sh (] /~/2) + ~,x~ -I/~-1 ch (]/%t~) sh (]/~-1/~) + 

+ ;~=a~.=~R~ "Ilia% sh (-I/~I~) sh (]/~t~);  a~.~ = ~ / C j .  

The functions Mi(x, n, p) (i = i, 2) characterize the heat transfer between the layers; 
Mi(x, n, p) (i = i, 2) + 0 as R T + ~. To obtain the original components of the temperatures 
we use the theorem of convolution of the product of the transforms [5] and the formula for 
the inverse Fourier cosine transforms 

r , ( x ,  z, t )= - - i f -  w,~{ . [TT,(x ,  n, t - - ~ ) Q ( ~ ) d ~ } c o s ( , , z ) ,  ( 5 ) .  
n=O 0 

where 

o+ t ~o { 
'Fj (x, n, t) -- 1 1 (--  1)fM~} dp; 

2~i S exp(pt)~=7q~1 
(a>p) 

1, n = 0 ,  
[2~ n 2, n = 1, 2 . . . .  

Having c a r r i e d  ou t  t h e  i n v e r s e  L a p l a c e  t r a n s f o r m a t i o n ,  u s i n g  t h e  theo rem of  e x p a n s i o n  of  
transforms [5], in much the same way as in [8] we obtain 

l - - ~ - - ( - - 1 ) '  x r'o eo , ~ = o ,  
k=l  

~', (x, n, t) =..4= 
l t r i m .  ~ TnkEnh, n X Tn'me -a- , - -  1)i x i 

m~l h=l  

= 1 , 2 , 3  . . . . .  

(6)  

where 

T ~  = K (P,~h) ...s.!n (a~b) cos {(I~ - -  Ixl) r , i ,  i = 1, 2, i ~ 1, 

k = l ,  2, 3, . . . , n = O ,  1, 2 . . . . .  

T ~m = K(p,,~,) sin (gfl2) ch (gl (11 - -  x)) . E i j  = exp (-- P~fl), 
t, )~=lg~g~l-ip (g) , 

T~ m K,  , sh (gill) cos (g2 ( tz--  Ixl) ) C e f =  (Cl11 -t- Cfl~)/Io, 
= t p ~ , , )  211 ' 3"=2glg2 , (g) 

K (p~,,,) = ~ (~,,~ - -  ~,,~) - -  P~,,~ (C~ - -  C~), n, k = 1, 2 . . . .  ; 

K(Poh) = pok (C~ - -C~ ) ,  te = 1, 2 . . . .  ; lo = i~ + / 2 ;  

a,i$,)/a= i, i = 1, 2; ~'ef = (~,zllx + E~12)/ Io, a e f =  ~ef/Cef, a 2 = (Pnh ~ 2 

= (r - -  p,~m)la=l, g~ -- a~  ' 

21I, (~) = 2 0/7~ = cos (art1) cos (&a~) [eft2 + Cfld - -  
OP p=-p,~ 

- -  sin (eZlll) sin (aft2) [ ~,~lla_.__..__~axlO~l "JC ' ~XlI2t~lax2o~2 .Jr_ RTClC2 >< 

( ' ~ = '  2 a 'a ' '  ) ]  X + R~lcq~=~l~a=l + cos (alli) sin (c%t=) X 
O~ i 

X ( c2 ~'x2=2 ) 
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2H~(g)= 2 OH] Op ~=_~,,~,~ = ch (gfl~) cos (g=l.) [Cfl= + Cflx] + 

q- sh (gila) sin (gfl=) { kxfl~ga k~l~g~ + R~ k~g~C~ • 
a,~g~ i a~g~ g~ 

9 l .. x (1 +R~=~g~ ~) +ch(gJOsin(g,at~) C~ ~ ~,~=& g~ a~ag2 + R~k~=g= (Cfl= - -  Cfl~) . 

The roots Pnm are determined from the equation (A m roots for each n) 

k~g~ cos (g212) sh (gllx)--k~2g~ sin (g212) ch (g,i1) =k~,k~2R~g~g2:sh (gfl,) sin (gflz), l ~m<~A~,  ( 7 a )  

and the roots Pnk are determined from the trigonometric equation 

k~2a2 sin(aft2) cos ( a d l ) + k . i a l  cos (a2/2) sin (a~l,)= k~lk~2RT~la~ sin (~.ltx) sin (a912), l ~ k < c ~ .  (7b )  

We note that Pnh<P~k+I, Pn~<P~+I, az2~]<Pnm<azL~, and az1~<P~h and, therefore, p~m<p~ . 
The coefficient A m depends on both the number n ~ I and on the thermophysical and geometric 
parameters of the components of the composite. 

The integral of the convolution of the functions in (5) can be calculated analytically 
only for some simple functions Q(t); generally numerical integration must be used to determine 
it. 

We make the boundary conditions more precise to ascertain the effect of the thermophysi- 
cal and geometric parameters of the layers of the composite on ~. Suppose that a pulsed ther- 
mal flux acts on the front surface of the material (z = 0) while the back surface (z = H) is 
thermally insulated. This problem is of purely practical interest as well since is simulates 
conditions that occur in the pulsed method of determining the thermal-conductivity coefficient 
("burst" method) of a layered composite [6]. We write q0(t) as 

qo(t ) = Iqo, O~ t < ~ ,  
~o, t > t v  (8) 

In this case the integral in (5) is calculated analytically and the solution of problem (3) 
for boundary conditions (8) can be written as 

~ A m 

Oi = 1 @ ~ k=,~ T~kEp(pok) @ 2 n=, ~ Ira=, ~ T~EP (P~m) ~- (--I)! k=, ' ,  (9) 

where 

Ep(pO) = (exp (pistp)-- 1)/(po)E~i (PO); Oi = T~/Tm; Tm = qotp/(HCof), 

the coefficient a is determined from (i) with allowance for the fact that 

A program written in FORTRAN IV was used on an EC-I045 computer to calculate @i, q*, O~ and 
a. The average computing time was a few seconds. We note that in the calculations the number 
of terms of the series Am(n ) varied from i (for n < 3) to 5-6 (for n = 8). 

As an example we considered a carbon composite with the thermophysical characteristics 
%zi = 240 W/m'K, %z2 = %xi = Ax2 = 30 W/m.K, and C I = C 2 = 3.2.106 J/m~-K and the geometric 

parameters Z I = s = 0.0006 m and H = 0.003 m. We denote this set of parameters by Km(0). We 

use Km(0 , f = y) to denote a composite differing from Km(0) by the value of the parameter 
f = y. The laser pulse length was chosen at 10 -4 sec. All of the calculations were carried 
out for the point z = H, i.e., for the back surface relative to the action of the pulse. 
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Fig. 2. Dynamics of change of coefficient 
of heat transfer between components ~, 
W/m2.K, for the composites: i) Km(0 , lxl 
= 150 W/m.K); 2) Km(0, lxl = 3 W/m.K). 
The values of a calculated from (2): a) 
a 2; b) a 3. 

In Fig. 2 the functions u(t) for the materials Km(0, Xxl = 150 W/m'K) and Km(0, Xxl = 

3 W/m'K) are compared with the values a 2 and a 3 calculated from (2). The results graphically 
demonstrate unsteady behavior of =(t) as the heat pulse propagates through the material, 
especially at short times. Moreover, the behavior of ~(t) as a function of Xxl 
qualitatively different: a local minimum of ~(t) exists at Axz = 3 W/m-K but is absent at 
Xxl = 150 W/m'K. Generalizing, we can note that the existence of an extremum of a(t) is 
characteristic of composites with a low heat-transfer coefficient. The time t m when the 
minimum appears does not depend on the amplitude of the laser pulse, i.e., is an intrinsic 
characteristic of the composite. The value of t m can be obtained from (i) if we set its 
first derivative with respect to t equal to zero: 

q,~(T~-- T2)--q* • = 0, t = t~. 
Analysis of Fig. 2 indicates that a ~ a 0 as t ~ ~. After setting an "error" interval, we can 

determine the corresponding ta: la=min{t, ~@[=a• Then a = =a = const to within As in the 

interval t a ~ t < =. The parameter t a depends on the thermophysical and geometric parameters 
of the composite as well as on the "error" ha. 

We assess the effect of the boundary conditions on the form of ~a" Since we are inter- 
ested in the behavior of = as t + ~, we assign the thermal flux at the boundary z = 0 in the 
form q = q0 exp(--bt) and assume that the surface z = H is thermally insulated. The integral 
of the convolution of functions (5) can then be calculated analytically 

Ti(x, z, t)------H--l [ 

where 

Am 

{Z 
k=l n=l m=l h=l bC e f  

AHU (t) = (exp (--bt)--exp (Put))/[Pu,b i �9 

The time dependence of the terms in (I0) is determined by AEij(t). As t § ~ the main 
contribution will be made by terms with the smallest exponent. As was shown earlier, the 
inequality Plm=~ <Pnm < Pnk; n, k = i, 2, 3, ...; m = I, 2 .... , A m holds. Only Plm=1, P01, 
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Fig. 3. The heat-transfer coefficient =a(W/m2-K) between the components 
versus the thermal conductivity coefficient Xxl (W/m-K) at Xx2 values of: 
i) 30, 2) i0, and 3) 3 W/m.K. 

Fig. 4. The thermal-transfer coefficient =a between the components versus 
the half-width s (m) of the first layer at s values of: i) 10 -4 , 2) 3"10 -4 , 
3) 6"10 -~, 4) 1.2"i0 -S m. 

b, therefore, can be the smallest exponents. We denote Plm=i = Pz and introduce~ Ps = min(pl, 
P01). Two fundamentally different cases are possible, depending on the characteristic of 
the boundary conditions b under consideration. 

i. "Weak" Effect. Suppose that Ps < b; then as t § ~ it follows from (i0) that 

1 { t ( - - l f r ~ - - -  
Tit~--~ H bCef 

We haveconsiderable possible alternatives. 
(P01) ~ (CI--C2), from (6) we have 

--,cos (11) 
b--po~ b - - p l  . . . ~  " 
Suppose that CI = C2. Bearing in mind that Ti01 ~ K 

c o s  (T~--T~)~I H b- -p~  \ _ ' 

q * t - - ~ - - ( 2 % ~ l / H ) ~  l,xx=o) b - - p ~  

and using (i) we obtain 

O~al L tO ~ef (Pl -- "~l%f) (12) 

We can say that =a does not depend on the form of the boundary conditions and is an intrinsic 
characteristic of the composite, being a function of only its thermophysical and geometric 
parameters. We note that the time t a taken by =(t) to reach its asymptotic form ~a depends 
only on the boundary conditions. 

Suppose that CI ~ C 2. Then either P01 < Pl or p~ < P01. In the latter case the deriva- 
tions above hold and the result is (12). If P01 < Pl then as t + ~ it follows from (ii) that 

^ %. Eoi , q , _ _ +  

and,  u s i n g  (1 ) ,  we have 

C1C~ 

/'] b - -  POl 

(13) 
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On the basis of the thermophysical parameters of actual composites we note that in most cases 
=al is the asymptotic value of a(t). We make a numerical analysis of Eq. (12). Figure 3 
shows the =a1(Ixl) curves for three materials: Km(0, lx2 = 30 W/m'K, lxl = vat), Km(0, lx2 = 
i0 W/m'K, lxl = var), and Km(0, Ix2 = 3 W/m'K, Xxl = var). Analysis of (2) at s = s = s 
shows that a2 and ~3 are symmetric with respect to the interchange %xl ~ lx2 

a 2 -  ~ ~i+~ 2 ' ~i+~ " 

In actual fact, however, lxl and Xx2 play a slightly different role in the heat transfer. 
Indeed we consider e(Xxl ; Ix2) = =(Xxl; lx2)/~(lx=; %xl); then from Fig. 3 it follows that 
e(10; 3) = 0.68, e(30; !0) = 0.76, and g(30; 3) = 0.73. Thus, when Xx~ > Ix= the interchange 
lx~ ~ Ix= causes =a~ to decrease by an amount g which depends on the initial values of the 
radial thermal conductivities of the components. A 300-fold change in %x~, from 1 to 300 
W/m'K, causes the =a of the materials Km(0, Xx2 = 3 W/m.K) and Km(0, Ix= = 30 W/m'K) to in- 
crease by a factor of 1.6 and 8, respectively. 

Figure 4 shows the graphs of ~al versus the half-width of the first layer at different 
half-thicknesses of the second layer. The coefficient aa~ increases as s decreases, the 
increase being larger for smaller values of s At s > 5 mm the time t a taken by a(t) to 
attain its asymptotic form aal tends to infinity and in fact the asymptotic value ~al becomes 
meaningless. 

The role of the contact thermal resistance between the layers during heat transfer con- 
sists in lowering the rate of heat transfer between the components of the composite. Else- 
where [7] we showed that on the assumption of a linear radial thermal flux density along x 
we can obtain 

cz (R~) =a(o) / (1  +~z(o)R~). (14) 

Comparison of (14) with (12) indicates that the approximate formula is practicable and the 
error of the calculations is less than 0.3% when the thermal resistance varies over the range 
0 < R T < 10 -3 K'm2/W. In contrast to the heat-transfer coefficients (2) =al depends on the 
thermal conductivity of the components along the z axis, but this dependence is very weak: 
a six-fold change in Iz1(Xz2) causes aal to change by 2Z (respectively by 0.5%). 

2. "Strong" Effect. In this case b < Ps and the behavior of the composite is determined 
by the boundary conditions and we can write 

Am 

T i t - * :  ' /-] ' bCef --(-- 1/h=l r~keb + 2 n=!Z [m=iZ rnrnEb + ( - - 1 ) ' /  k = l  TikEb] COS (*ng)}  ' 

where Eb(t)=exp (--bt)F(b); F(b)= (pii--b)-'. ~ From (i) we obtain 

where 

(14') 

A m =o 

r'o F(b)+ 2 Z {Z Z 
h= l  r ~ l  m=l  h=l  

We note that (14') is valid only for an exponential dependence of the boundary conditions 
on time; (14') persists but the form of F(b) changes. The constraint due to the thermal insu- 
lation of the surface z = H is not fundamental: the form of (12) and (13) does not change if 

qH(t) < exp(--pst) When qH(t) > exp(--pst) we must determine ~(t)=max{q0(t), qH(t)} and then 

carry out the calculations (14) for q(t), 

In summary, the behavior of =(t) as t + ~ depends on the sign of the inequality exp 
(~ps t) ~ q(t). If the "greater than" sign holds, then the external effect can be said to be 
"weak" and the asymptotic value =a is determined by the thermophysical and geometric parameters 

of the composite; otherwise, ~a = ~(q)" 
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The above analysis demonstrated the dynamics of ~(t) and made it possible to obtain its 
asymptotic value as well as the dependence of the latter on the parameters of the composite. 
When calculating temperature fields in layered (reinforced) media within the framework of the 
two-temperature approach one must assess the effect of the unsteady nature of = on the accu- 
racy of the calculation and take it into account, if necessary. A similar analysis should 
also be carried out for reinforced composites. 

NOTATION 

Here z and x denote the space variables; t is the time; Ti(x, z, t) and Ti(z, t) are 
the temperature of the i-th component and its average cross-sectional value; qij is the den- 
sity of the thermal flux from the i-th to the j-th component; ~ is the coefficient of heat 
transfer between components; Ci, kxi, and lzi are the coefficients of volumetric heat transfer 
and the radial and axial thermal conductivity, respectively; R T is the coefficient of contact 
thermal resistance between layers; s is the half-thickness of the layers; q0 is the thermal 
flux density of the laser radiation; tp is the length of the laser burst; p and n are the 
parameters of the Laplace and Fourier cosine transforms; and s is the characteristic size 
of microinhomogeneities. 
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PROBLEM OF HEAT AND MASS TRANSFER DURING SHORT-TIME 

PHASE CONTACT 

V. V. Migunov UDC 536-12 

The associated mixed boundary-value problem of multicomponent mutually related 
heat and mass transfer during short-time contact of two phases with arbitary 
dimensionalities of the transfer vector potentials in them through a boundary 
with selective penetrability during excitation of material flows in each of 
the phases, which are absent in the other phase, is formulated and solved. This 
is done with the purpose of generalizing the model of phase penetration and 
restoration in the theory of mass exchange, and of similar models in the the- 
ory of heat exchange, based on the phenomenon of short-time contact interaction. 
The validity limits of these models are estimated. An effect is observed of 
internal phase flows on the intensity of nonstationary interphase exchange. 

The contemporary intense development of material processing technology leads to an enhanced 
role of nonstationary mutually related exchange processes in comparison with the stationary 
decoupled ones. This fact is so far not sufficiently reflected in the solution of problems of 
heat and mass transfer (HMT) at small Fourier numbers, for short-time contact (SC) phases. The 
physical model concepts have been developed well for both heat- and mass-transfer, but sepa- 
rately. In the theory of mass exchange they are represented by permeation (Higby) and phase 
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